skip to main content


Search for: All records

Creators/Authors contains: "Chen, Ji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantitative assessment of movement using motion capture provides insights on mobility which are not evident from clinical evaluation. Here, in older individuals that were healthy or had suffered a stroke, we aimed to investigate their balance in terms of changes in body kinematics and muscle activity. Our research question involved determining the effects on post- compared to pre-sensorimotor training exercises on maintaining or improving balance. Our research hypothesis was that training would improve the gait and balance by increasing joint angles and extensor muscle activities in lower extremities and spatiotemporal measures of stroke and elderly people. This manuscript describes a motion capture-based evaluation protocol to assess joint angles and spatiotemporal parameters (cadence, step length and walking speed), as well as major extensor and flexor muscle activities. We also conducted a case study on a healthy older participant (male, age, 65) and an older participant with chronic stroke (female, age, 55). Both participants performed a walking task along a path with a rectangular shape which included tandem walking forward, right side stepping, tandem walking backward, left side stepping to the starting location. For the stroke participant, the training improved the task completion time by 19 s. Her impaired left leg had improved step length (by 0.197 m) and cadence (by 10 steps/min) when walking forward, and cadence (by 12 steps/min) when walking backward. The non-impaired right leg improved cadence when walking forward (by 15 steps/min) and backward (by 27 steps/min). The joint range of motion (ROM) did not change in most cases. However, the ROM of the hip joint increased significantly by 5.8 degrees (p = 0.019) on the left leg side whereas the ROMs of hip joint and knee joint increased significantly by 4.1 degrees (p = 0.046) and 8.1 degrees (p = 0.007) on the right leg side during backward walking. For the healthy participant, the significant changes were only found in his right knee joint ROM having increased by 4.2 degrees (p = 0.031) and in his left ankle joint ROM having increased by 5.5 degrees (p = 0.006) during the left side stepping. 
    more » « less
  2. Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones. In practice, prior information and special structures are usually employed in order to improve the accuracy of matrix completion. In this paper, we propose a unified nonconvex optimization framework for matrix completion with linearly parameterized factors. In particular, by introducing a condition referred to as Correlated Parametric Factorization, we conduct a unified geometric analysis for the nonconvex objective by establishing uniform upper bounds for low-rank estimation resulting from any local minimizer. Perhaps surprisingly, the condition of Correlated Parametric Factorization holds for important examples including subspace-constrained matrix completion and skew-symmetric matrix completion. The effectiveness of our unified nonconvex optimization method is also empirically illustrated by extensive numerical simulations. 
    more » « less
  3. Anandkumar Animashree (Ed.)
    Techniques of matrix completion aim to impute a large portion of missing entries in a data matrix through a small portion of observed ones. In practice, prior information and special structures are usually employed in order to improve the accuracy of matrix completion. In this paper, we propose a unified nonconvex optimization framework for matrix completion with linearly parameterized factors. In particular, by introducing a condition referred to as Correlated Parametric Factorization, we conduct a unified geometric analysis for the nonconvex objective by establishing uniform upper bounds for low-rank estimation resulting from any local minimizer. Perhaps surprisingly, the condition of Correlated Parametric Factorization holds for important examples including subspace-constrained matrix completion and skew-symmetric matrix completion. The effectiveness of our unified nonconvex optimization method is also empirically illustrated by extensive numerical simulations. 
    more » « less
  4. null (Ed.)
  5. Abstract Objective The widespread deployment of electronic health records (EHRs) has introduced new sources of error and inefficiencies to the process of ordering medications in the hospital setting. Existing work identifies orders that require pharmacy intervention by comparing them to a patient’s medical records. In this work, we develop a machine learning model for identifying medication orders requiring intervention using only provider behavior and other contextual features that may reflect these new sources of inefficiencies. Materials and Methods Data on providers’ actions in the EHR system and pharmacy orders were collected over a 2-week period in a major metropolitan hospital system. A classification model was then built to identify orders requiring pharmacist intervention. We tune the model to the context in which it would be deployed and evaluate global and local feature importance. Results The resultant model had an area under the receiver-operator characteristic curve of 0.91 and an area under the precision-recall curve of 0.44. Conclusions Providers’ actions can serve as useful predictors in identifying medication orders that require pharmacy intervention. Careful model tuning for the clinical context in which the model is deployed can help to create an effective tool for improving health outcomes without using sensitive patient data. 
    more » « less
  6. Wavelength beam-combining of four terahertz (THz) distributed-feedback quantum-cascade lasers (QCLs) is demonstrated using low-cost THz components that include a lens carved out of a plastic ball and a mechanically fabricated blazed grating. Single-lobed beams from predominantly single-mode QCLs radiating peak power in the range of50−<#comment/>170mWare overlapped in the far field at frequencies ranging from3.31−<#comment/>3.54THz. Collinear propagation with a maximum angular deviation of0.3∘<#comment/>is realized for the four beams. The total power efficiency for the focused and beam-combined radiation is as high as25%<#comment/>. This result could pave the way for future commercialization of beam-combined monolithic THz QCL arrays for multi-spectral THz sensing and spectroscopy at standoff distances.

     
    more » « less
  7. null (Ed.)